Wednesday, May 24, 2017

Natural history and ecology go together like flowers and pollinators

I've only very recently returned from Victoria, where I attended CSEE2017 and gave a talk. CSEE2017 was fantastic, but I will save my commentary thereupon for another post. I'm only mentioning my visit to Victoria now because I went to the Butchart Gardens while there. To be perfectly honest, these days as a plant ecologist I often get grumpy visiting ornamental gardens, as they generally have few or no native plants, usually have virtually no pollinators to watch, and just lack ecological interest. Certainly I found the gardens beautiful, and if I were a horticulture aficionado I might have found more to interest my curiosity while there, but what actually caught my attention was this:

Tulip showing stem fasciation and an abnormal number of flowers.
Fasciation: an abnormal condition of growth tissues, wherein in the meristem (area of actively dividing, growing, and differentiating cells), rather than having its normal domed/round shape, is elongated in one dimension, resulting in thick, wide organs and distorted growth. For a more detailed discussion of fasciation, I invite you to read my previous blog post on the topic (linked below).

I have talked about fasciation before, in context of a rather awesome mutant thistle that displayed multiple levels of fasciation plus homeosis (substitution of one organ for another), so that was an individual with a lot of issues. But this fasciated  tulip is rather intriguing to me because it exhibits only stem fasciation, with no other visible abnormalities. The photo below shows the fasciated stem clearly.

Fasciated tulip stem
Now, the fasciation of just the stem is interesting to me because it is specifically accompanied by a subsequent splitting of the fasciated stem and the production of multiple otherwise normal flowers, as seen in the first photo and even the one below, where there are two tulips rather too close to one another, but they are not fused (i.e. they grew on separate meristems) and they seem to be anatomically normal. You may have noticed that the photo below is a different plant -- at the gardens I saw three cases of this kind of stem fasciation in tulips with an abnormally large number of otherwise anatomically normal flowers.

Fasciated tulip again
Since I saw it three times, it may well have been more common than that at the garden. Possibly this is a heritable fasciation (i.e. fasciation resulting from a genetic mutation); the probability of this option depends a bit on how the garden acquires and maintains their tulip population -- if they breed their own tulips, then it is possible that these fasciated individuals are actually related to each other, which increases the probability of this being a heritable genetic mutation.

Fasciated tulip!

However, as with the thistle, there are other reasonable possibilities, among them the possibility that the fasciation has an environmental cause (e.g. a pesticide or fertilizer applied to all the tulips), or that it results from a bacterial or fungal pathogen transmitted through the garden by gardening activities like watering and weeding.

My friend and travelling companion, Kayleigh, also found a case of fasciation in Bellis perennis (english daisy) in Victoria. First, here's a normal one:

Bellis perennis normal specimen -- photo taken by K.G. Nielson and used with permission
And our weird mutant showing floral fasciation (this is what is not seen in the tulips above; with them, the stem is fasciated but the flowers normal; with this one, the stem is normal but the flower is fasciated):

Bellis perennis fasciated individual -- photo taken by K.G. Nielson and used with permission
So you might be wondering when I'm going to get to the point. The point is this: an ecologist should also be a natural historian! There was an interesting opinion piece recently published about the importance ecologists place on natural history (the largely observational study of organisms, particularly their traits, their interactions with their environment, and their history), and how ill-equipped many young ecologists feel to teach natural history.

This story resonates with me, because I adore natural history but make no pretensions to having great skill or knowledge in the area; I am largely self-taught on this subject. I run this blog partly to share the beauty and wonder and amazing scientific appeal of nature, and partly to remind myself to root my ideas firmly in the reality (read: natural history) of the organisms and communities I study.

I believe that natural history is where it all begins: a couple of ecologists on a walk notice a bunch of fasciated plants, and this spurs all sorts of wonderful lines of inquiry about how the fasciation comes about, how the condition might spread in a population, the particular mechanisms of function, the possible associations between assorted fasciation types, etc etc etc.

Darwin is a particularly notable example of beginning ecology with natural history: his work starts with incisive observation and proceeds from there into testable hypotheses and experiments.

When it comes down to it, everything we do as ecologists starts in with natural history.

I don't have enough experience or expertise to weigh in on whether natural history training is lacking in many universities as suggested in the article I linked. I can't even say whether my own lack of extensive natural history training is due to my own neglect of my options, or due to an absence of options available to me. But at the personal heart of it, I'm an ecologist because it allows me to blend my deep and abiding love of natural history with the elegance, logic, and rigour of the scientific approach. I'm sure I'm not alone.

The best ecological questions and hypotheses happen because ecologists are also natural historians.

Besides, it's better for our health to get outside and wander around once in a while with our eyes wide open.

No comments:

Post a Comment